psicometria 34-38
![]() |
![]() |
![]() |
Title of test:![]() psicometria 34-38 Description: psicometria 34-38 Creation Date: 2023/06/18 Category: Others Number of questions: 50
|




New Comment |
---|
NO RECORDS |
Il livello di fiducia viene indicato con la lettera greca: alfa. theta. lambda. beta. La zona dell'intervallo di fiducia in cui è più probabile che il nostro valore ricada è definita come: "alfa più beta". alfa. "alfa diviso due". "uno meno alfa". L'errore medio di campionamento: viene stimato usando le medie dei campioni. viene stimato usando le differenze interquartili dei campioni. viene stimato usando le varianze corrette dei campioni. viene stimato usando le varianze dei campioni. Per stimare l'intervallo di una media è necessario decidere: il livello di variabilità. il livello di tolleranza. il livello di fiducia. il livello di deviazione standard. Per stimare l'intervallo di una media è necessario conoscere: la stima puntuale. il numero esatto di elementi non inclusi nella popolazione. la distribuzione della media campionaria intorno a µ. il livello di tolleranza. Quando stabiliamo un livello di fiducia pari a 0,95 per la stima a intervallo significa che. su 100 medie di campioni 95 cadono nell'intervallo e 5 fuori. su 100 medie di campioni solo una cadrà dentro l'intervallo. su 100 medie di campioni 99 cadono nell'intervallo e 1 cade fuori. Su 100 medie non possiamo conoscerne solo 5. Quando stabiliamo un livello di fiducia pari a 0,99 per la stima a intervallo significa che: su 100 medie di campioni 95 cadono nell'intervallo e 5 fuori. su 100 medie di campioni 99 cadono nell'intervallo e 1 cade fuori. Su 100 medie non possiamo conoscerne una sola. su 100 medie di campioni solo una cadrà dentro l'intervallo. Il teorema del limite centrale afferma che: le medie di campioni sufficientemente grandi sono distribuite normalmente. non si può conoscere a priori la distribuzione di un campione. le medie di campioni piccoli sono distribuite normalmente. le medie di tutti i tipi di campioni sono distribuite normalmente. Solitamente le ipotesi statistiche vengono verificate usando: il campione. soggetti singoli. la popolazione. la media. Il procedimento della verifica delle ipotesi può essere. entrambi. non parametrico. nessuna delle due. parametrico. Il procedimento di verifica delle ipotesi parametrico si applica quando: abbiamo variabili qualitative. non si conosce la distribuzione di probabilità. è nota la distribuzione di probabilità. non è presente un campione. H0 rappresenta: L'ipotesi alternativa. entrambe. L'ipotesi nulla. nessuna delle due. Il procedimento di verifica delle ipotesi non parametrico si applica quando. è nota la distribuzione di probabilità. non è presente un campione. non si conosce la distribuzione di probabilità. abbiamo variabili senza dati mancanti. La verifica delle ipotesi si basa su una decisione tra due ipotesi definite dal ricercatore: Ipotesi nulla (H0) e ipotesi alternativa (H1). Ipotesi di partenza (H1) e ipotesi di arrivo (H0). Ipotesi di partenza (H0) e ipotesi di arrivo (H1). Ipotesi nulla (H1) e ipotesi alternativa (H0). L'ipotesi nulla è anche detta: ipotesi delle differenze. ipotesi dell'uguaglianza o delle non differenze. sperimentale o di ricerca. H1. L'ipotesi alternativa: è anche detta ipotesi dell'uguaglianza o delle non differenze. è falsificata quando viene falsificata l'ipotesi nulla. è accettata quando viene falsificata l'ipotesi nulla. è accettata quando viene accettata l'ipotesi nulla. L'ipotesi nulla e ipotesi alternativa. sono esaustive. nessuna delle due. entrambe le alternative proposte sono corrette. sono mutualmente escludentesi. La regione di accettazione rappresenta: la probabilità di accettare l'ipotesi alternativa. la probabilità di commettere un errore. la probabilità di accettare l'ipotesi nulla. a probabilità di avere una media maggiore di 0. La regione di rifiuto rappresenta: la probabilità di commettere un errore. la probabilità di accettare l'ipotesi alternativa. la probabilità di accettare l'ipotesi nulla. la probabilità di avere una media maggiore di 1. H1 rappresenta: nessuna delle due. L'ipotesi alternativa. entrambe. L'ipotesi nulla. L'errore di seconda specie si ha quando: si rifiuta l'ipotesi nulla quando è falsa. si rifiuta l'ipotesi nulla quando è vera. si accetta l'ipotesi nulla quando è vera. si accetta l'ipotesi nulla quando è falsa. L'errore di prima specie si ha quando: si rifiuta l'ipotesi nulla quando è vera. si accetta l'ipotesi nulla quando è falsa. si rifiuta l'ipotesi nulla quando è falsa. si accetta l'ipotesi nulla quando è vera. Quando accettiamo l'ipotesi nulla: accettiamo anche l'ipotesi alternativa. non possiamo trarre conclusioni circa l'ipotesi alternativa. rifiutiamo automaticamente l'ipotesi alternativa. dobbiamo fare un altro test per capire se accettare l'ipotesi alternativa. Quando rifiutiamo l'ipotesi nulla: dobbiamo fare un altro test per capire se accettare l'ipotesi alternativa. accettiamo automaticamente l'ipotesi alternativa. non possiamo trarre conclusioni circa l'ipotesi alternativa. rifiutiamo anche l'ipotesi alternativa. Per ridurre sia l'errore di prima che di seconda specie dobbiamo: selezionare dalla popolazione solo soggetti volontari. ridurne uno ridurrà automaticamente anche l'altro. possiamo intervenire solo sull'errore di prima specie. aumentare la dimensione del campione. L'ipotesi alternativa permette di ipotizzare che la stima campionaria: sia minore o maggiore del elativo valore della popolazione. entrambe. nessuna delle due. sia diverso al relativo valore della popolazione. Quando l'ipotesi alternativa afferma che i due valori sono diversi applicheremo: test standardizzato. test unilaterale destro. test unilaterale sinistro. un test bilaterale. Quando l'ipotesi alternativa afferma che il valore stimato dal nostro campione sia minore del valore della popolazione useremo: test standardizzato. test bilaterale. test unilaterale destro. test unilaterale sinistro. Quando l'ipotesi alternativa afferma che il valore stimato dal nostro campione sia maggiore del valore della popolazione useremo: test unilaterale destro. test bilaterale. test unilaterale sinistro. test standardizzato. Quando non conosciamo la varianza della popolazione con cui vogliamo confrontare il nostro campione con meno di 30 soggetti: la stimeremo usando quella del campione. usiamo della del campione perché assumiamo che siano equivalenti. tutte le alternative. non possiamo fare nessun calcolo. Nella distribuzione "t di student". la curva cambia in base alla numerosità. esiste una sola curva possibile. la curva è indipendente dalla numerosità. la curva è fissa. . Dalle tavole della t di student otteniamo: Il valore critico di t che fa riferimento alla distribuzione teorica. il valore di t da confrontare con il valore critico di t. la varianza del campione. Il valore critico di t che fa riferimento ai dati ottenuti. Quando usiamo il test t per capire se un campione appartiene ad una popolazione: non conosciamo la varianza della popolazione. non siamo interessati alla varianza della popolazione. conosciamo la varianza della popolazione. non usiamo la varianza né del campione né della popolazione. I gradi di libertà della t di student si calcolano: N-1. N/1. N+1. N=n. Nella distribuzione "t di student" la numerosità del campione: equivale al valore critico. ci permette di calcolare i gradi di libertà. equivale ai gradi di libertà della distribuzione. è un valore che non va mai tenuto in considerazione. Nelle tabelle per calcolare il valore critico del mio test t di Student posso testare: solo ipotesi ad una coda. solo ipotesi a due code. nessun tipo di ipotesi. ipotesi ad una e due code. Le tavole della t di student ci permettono di verificare: solo ipotesi bidirezionali. sia ipotesi monodirezionali che bidirezionali. solo ipotesi monodirezionali. né ipotesi monodirezionali né bidirezionali. . Quando ho un campione con meno di 30 soggetti i dati seguono la distribuzione: entrambe. nessuna delle due. normale. t di student. Se il valore calcolato di t è maggiore del valore critico di t: accetterò l'ipotesi nulla. non potrò fare affermazioni circa l'ipotesi nulla. rifiuterò l'ipotesi nulla. rifiuterò l'ipotesi alternativa. Quando voglio verificare se il mio campione, con meno di 30 soggetti, appartiene alla popolazione applicherò: t test. anova. test della binomiale. chi quadro. Se il valore critico di t è minore del valore calcolato di t: rifiuterò l'ipotesi nulla. non potrò fare affermazioni circa l'ipotesi nulla. accetterò l'ipotesi nulla. rifiuterò l'ipotesi alternativa. Se il valore critico di t è maggiore del valore calcolato di t: accetterò l'ipotesi alternativa. rifiuterò l'ipotesi nulla. non potrò fare affermazioni circa l'ipotesi nulla. accetterò l'ipotesi nulla. Quando il chi-quadrato «calcolato» è maggiore del chi-quadrato «critico»: rifiutiamo H0. tutte le alternative. rifiutiamo H1. accettiamo H0. Quando il chi-quadrato «calcolato» è minore del chi-quadrato «critico»: rifiutiamo H0. nessuna delle alternative. accettiamo H1. accettiamo H0. Quando il chi-quadrato «critico» è minore del chi-quadrato «calcolato»: accettiamo H0. tutte le alternative. rifiutiamo H0. rifiutiamo H1. I gradi di libertà del chi-quadrato si calcolano: (numero di righe + 1) x (numero di colonne + 1). (numero di righe * 1) x (numero di colonne * 1). (numero di righe / 1) x (numero di colonne / 1). (numero di righe - 1) x (numero di colonne - 1). Per verificare la nostra ipotesi dobbiamo confrontare i valori del chi-quadrato detti: "ottenuto" e "tabellare". "ottenuto" e "critico". "calcolato" e "tabellare". "calcolato" e "critico". Il test del chi-quadrato non può essere usato: nessuna delle alternative. con variabili ordinali. con variabili nominali. con variabili a rapporti equivalenti. Per calcolare gli indici necessari per il test chi-quadrato i dati devono essere organizzati: usando una tabella per ogni variabile analizzata. in tabelle di contingenza. in grafici a torta. dividendo i numeri pari da quello dispari. Il test del chi-quadrato permette: di verificare le differenze tra valori teorici. di verificare le differenze tra valori osservati e valori teorici. tutte le alternative. di verificare le differenze tra valori osservati. |